Nature-inspired hierarchical building materials with low CO2 emission and superior performance

Souza, F. B. D., Yao, X., Gao, W. & Duan, W. Graphene opens pathways to a carbon-neutral cement industry. Sci. Bull. 67, 5–8 (2022).
Google Scholar
Miller, S. A. J., Vanderley, M. & Sergio, A. Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 114, 115–124 (2018).
Google Scholar
Im, D. & Lee, W. K. Effect of carbon dioxide-reduced cement on properties of lightweight-foamed. Concr. J. Environ. Sci. Int. 29, 605–612 (2020).
Google Scholar
Antunes, D., Martins, R., Carmo, R., Costa, H. & Júlio, E. A solution with low-cement-lightweight concrete and high durability for applications in prefabrication. Constr. Build. Mater. 275, 122153 (2021).
Google Scholar
Pelisser, F., Barcelos, A., Santos, D., Peterson, M. & Bernardin, A. Lightweight concrete production with low Portland cement consumption. J. Clean. Prod. 23, 68–74 (2012).
Google Scholar
Richard, A. O. & Ramli, M. B. A qualitative study of green building indexes rating of lightweight foam. Concr. J. Sustain. Dev. 4, 188–189 (2011).
Google Scholar
Liang, T., Chen, L., Huang, Z., Zhong, Y. & Zhang, Y. Ultra-lightweight low-carbon LC3 cement composites: uniaxial mechanical behaviour and constitutive models. Constr. Build. Mater. 404, 133173 (2023).
Google Scholar
Thomas, B. S. & Gupta, R. C. A comprehensive review on the applications of waste tire rubber in cement concrete. Renew. Sustain. Energy Rev. 54, 1323–1333 (2016).
Google Scholar
Raj, A., Sathyan, D. & Mini, K. M. Physical and functional characteristics of foam concrete: a review. Constr. Build. Mater. 221, 787–799 (2019).
Google Scholar
Wang F. et al. Wood-inspired cement with high strength and multifunctionality. Adv. Sci. 8, 2000096 (2021).
Du, F. et al. Bioinspired super thermal insulating, strong and low carbon cement aerogel for building envelope. Adv. Sci. 10, 2300340 (2023).
Google Scholar
Hedayat, N., Du, Y. & Ilkhani, H. Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods. Renew. Sustain. Energy Rev. 77, 1221–1239 (2017).
Google Scholar
Chen, Y. et al. Multi-layered cement-hydrogel composite with high toughness, low thermal conductivity, and self-healing capability. Nat. Commun. 14, 3438 (2023).
Google Scholar
Berglund, L. A. & Burgert, I. Bioinspired wood nanotechnology for functional materials. Adv. Sci. 30, 1704285 (2018).
Google Scholar
Huang, W., Restrepo, D., Jung, J., Su, F. Y. & Kisailus, D. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 31, 1901561 (2019).
Google Scholar
Kang, D. W. et al. Emerging porous materials and their composites for NH(3) gas removal. Adv. Sci. 7, 2002142 (2020).
Google Scholar
Pei, X. et al. Bionic mechanical design of titanium bone tissue implants and 3D printing manufacture. Mater. Lett. 208, 133–137 (2017).
Google Scholar
Tan, Y. et al. Flexible pressure sensors based on bionic microstructures: from plants to animals. Adv. Mater. Interfaces 9, 2101312 (2022).
Google Scholar
Gao, Y., Lalevée, J. & Simon-Masseron, A. An overview on 3D printing of structured porous materials and their applications. Adv. Mater. Technol. 8, 2300377 (2023).
Google Scholar
Zhang, S., Yang, Q., Wang, C., Luo, X. & Yamauchi, Y. Porous organic frameworks: advanced materials in analytical chemistry. Adv. Sci. 5, 1801116 (2018).
Google Scholar
Wang, W. et al. Damage-tolerant material design motif derived from asymmetrical rotation. Nat. Commun. 13, 1289 (2022).
Google Scholar
Qi, C., Jiang, F. & Yang, S. Advanced honeycomb designs for improving mechanical properties: a review. Compos. Part B Eng. 227, 109393 (2021).
Google Scholar
Kontturi, E. et al. Advanced materials through assembly of nanocelluloses. Adv. Mater. 30, 1703779 (2018).
Google Scholar
Zhang, X. A novel mineralized high strength hydrogel for enhancing cell adhesion and promoting skull bone regeneration in situ. Compos. Part B Eng. 197, 108183 (2020).
Google Scholar
Mackay, M. et al. General strategies for nanoparticle dispersion. Science 311, 1740–1743 (2006).
Google Scholar
Yang, J. et al. Probing structure-heterogeneous nucleation efficiency relationship of mesoporous particles in polylactic acid microcellular foaming by supercritical carbon dioxide. J. Supercrit. Fluids 95, 228–235 (2014).
Google Scholar
Aretxabaleta, X. M., Lopez-Zorrilla, J., Etxebarria, I. & Manzano, H. Multi-step nucleation pathway of C-S-H during cement hydration from atomistic simulations. Nat. Commun. 14, 7979 (2023).
Google Scholar
Amirkhani, S., Bagheri, R. & Zehtab, A. Effect of pore geometry and loading direction on deformation mechanism of rapid prototyped scaffolds. Acta Mater. 60, 2778–2789 (2012).
Google Scholar
Birchall, J. D., Howard, A. J. & Kendall, K. Flexural strength and porosity of cements. Nature 289, 388–390 (1981).
Google Scholar
Siddique, S. H., Hazell, P. J., Wang, H., Escobedo, J. P. & Ameri, A. Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption-A review. Addit. Manuf. 58, 103051 (2022).
Wu, S. et al. Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties. Nat. Commun. 15, 4441 (2024).
Google Scholar
Amran, Y. H. M., Farzadnia, N. & Ali, A. Properties and applications of foamed concrete; a review. Constr. Build. Mater. 101, 990–1005 (2015).
Google Scholar
Shah, S. N. et al. Lightweight foamed concrete as a promising avenue for incorporating waste materials: a review. Resour. Conserv. Recycl. 164, 105103 (2021).
Google Scholar
Zhou, J. & Chen, X. Stress-strain behavior and statistical continuous damage model of cement mortar under high strain rates. J. Mater. Civ. Eng. 25, 120–130 (2013).
Google Scholar
Zeng, T., Shao, J. F. & Xu, W. Y. A micromechanical model for the elastic-plastic behavior of porous rocks. Comput. Geotech. 70, 130–137 (2015).
Google Scholar
Steck, J., Kim, J., Kutsovsky, Y. & Suo, Z. Multiscale stress deconcentration amplifies fatigue resistance of rubber. Nature 624, 303–308 (2023).
Google Scholar
Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).
Google Scholar
Sun, T. L. et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013).
Google Scholar
Lv, S. et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 49, 121–127 (2013).
Google Scholar
Wang, H. et al. Deciphering the influence of superabsorbent polymers on cement hydration and portlandite formation. Constr. Build. Mater. 418, 135455 (2024).
Google Scholar
Maruyama, I. & Lura, P. Properties of early-age concrete relevant to cracking in massive concrete. Cem. Concr. Res. 123, 105770 (2019).
Google Scholar
Jensen, O. M. & Hansen, P. F. Water-entrained cement-based materials I. Principles and theoretical background. Cem. Concr. Res. 31, 647–654 (2001).
Google Scholar
Wang, H. et al. A novel strategy to reinforce double network hydrogels with enhanced mechanical strength and swelling ratio by nano cement hydrates. Polymer 269, 125725 (2023).
Google Scholar
Sun, G., Li, Z., Liang, R., Weng, L. T. & Zhang, L. Super stretchable hydrogel achieved by non-aggregated spherulites with diameters <5 nm. Nat. Commun. 7, 12095 (2016).
Google Scholar
Jalilehvand, F. et al. Hydration of the calcium ion. An EXAFS, large-angle X-ray scattering, and molecular dynamics simulation study. J. Am. Chem. Soc. 123, 431–441 (2001).
Google Scholar
Li, W. et al. Electrochemical impedance interpretation for the fracture toughness of carbon nanotube/cement composites. Constr. Build. Mater. 114, 499–505 (2016).
Google Scholar
RILEM. Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Mater. Struct. 18, 287–290 (1985).
Wang, H. et al. Assessment of the performances and reactions of quaternary LC2-slag cement. Adv. Cem. Res. 34, 529–541 (2022).
Google Scholar
Liu, Q., Lu, Z., Xu, J., Li, Z. & Sun, G. Insight into the in situ copolymerization of monomers on cement hydration and the mechanical performance of cement paste. J. Sustain. Cem.-Based Mater. 12, 1–15 (2022).
Google Scholar
VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).
Google Scholar
Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703 (1996).
Google Scholar
Hartwigsen, C., Gœdecker, S. & Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641 (1998).
Google Scholar
VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Google Scholar
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Google Scholar
Claverie, J., Bernard, F., Cordeiro, J. M. M. & Kamali-Bernard, S. Ab initio molecular dynamics description of proton transfer at water-tricalcium silicate interface. Cem. Concr. Res. 136, 106162 (2020).
Google Scholar
Leung, K. & Rempe, S. B. Ab initio rigid water: effect on water structure, ion hydration, and thermodynamics. Phys. Chem. Chem. Phys. 8, 2153–2162 (2006).
Google Scholar
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
Google Scholar
Bonomi, M. & Parrinello, M. Enhanced sampling in the well-tempered ensemble. Phys. Rev. Lett. 104, 190601 (2010).
Google Scholar
Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604–613 (2014).
Google Scholar
Zeng, J. et al. DeePMD-kit v2: a software package for deep potential models. J. Chem. Phys. 159, 054801 (2023).
Google Scholar
Wang, H., Zhang, L., Han, J. & Weinan, E. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).
Google Scholar
Zhang, D. et al. DPA-2: a large atomic model as a multi-task learner. npj Comput. Mater. 10, 293 (2024).
Google Scholar
Thompson, A. P. et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).
Google Scholar
Li, Y., Pan, H., Liu, Q., Ming, X. & Li, Z. Ab initio mechanism revealing for tricalcium silicate dissolution. Nat. Commun. 13, 1253 (2022).
Google Scholar
Li, Y., Pan, H. & Li, Z. Unravelling the dissolution dynamics of silicate minerals by deep learning molecular dynamics simulation: a case of dicalcium silicate. Cem. Concr. Res. 165, 107092 (2023).
Google Scholar
Li, Y., Sun, Z., Li, Z., Chen, B. & Li, Z. Dimeric and oligomeric interactions between calcium silicate aqua monomers before calcium silicate hydrate nucleation. Cem. Concr. Res. 173, 107297 (2023).
Google Scholar
Li, Y., Pan, H. & Li, Z. Ab initio metadynamics simulations on the formation of calcium silicate aqua complexes prior to the nuleation of calcium silicate hydrate. Cem. Concr. Res. 156, 106767 (2022).
Google Scholar
Bussi, G. & Laio, A. Using metadynamics to explore complex free-energy landscapes. Nat. Rev. Phys. 2, 200–212 (2020).
Google Scholar
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Google Scholar
link