April 30, 2025

Architectural Concepts Guide

Elevating Home Design Standards

Nature-inspired hierarchical building materials with low CO2 emission and superior performance

Nature-inspired hierarchical building materials with low CO2 emission and superior performance
  • Souza, F. B. D., Yao, X., Gao, W. & Duan, W. Graphene opens pathways to a carbon-neutral cement industry. Sci. Bull. 67, 5–8 (2022).

    Article 

    Google Scholar 

  • Miller, S. A. J., Vanderley, M. & Sergio, A. Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 114, 115–124 (2018).

    Article 
    CAS 

    Google Scholar 

  • Im, D. & Lee, W. K. Effect of carbon dioxide-reduced cement on properties of lightweight-foamed. Concr. J. Environ. Sci. Int. 29, 605–612 (2020).

    Article 
    MATH 

    Google Scholar 

  • Antunes, D., Martins, R., Carmo, R., Costa, H. & Júlio, E. A solution with low-cement-lightweight concrete and high durability for applications in prefabrication. Constr. Build. Mater. 275, 122153 (2021).

    Article 
    MATH 

    Google Scholar 

  • Pelisser, F., Barcelos, A., Santos, D., Peterson, M. & Bernardin, A. Lightweight concrete production with low Portland cement consumption. J. Clean. Prod. 23, 68–74 (2012).

    Article 
    CAS 

    Google Scholar 

  • Richard, A. O. & Ramli, M. B. A qualitative study of green building indexes rating of lightweight foam. Concr. J. Sustain. Dev. 4, 188–189 (2011).

    MATH 

    Google Scholar 

  • Liang, T., Chen, L., Huang, Z., Zhong, Y. & Zhang, Y. Ultra-lightweight low-carbon LC3 cement composites: uniaxial mechanical behaviour and constitutive models. Constr. Build. Mater. 404, 133173 (2023).

    Article 
    CAS 

    Google Scholar 

  • Thomas, B. S. & Gupta, R. C. A comprehensive review on the applications of waste tire rubber in cement concrete. Renew. Sustain. Energy Rev. 54, 1323–1333 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Raj, A., Sathyan, D. & Mini, K. M. Physical and functional characteristics of foam concrete: a review. Constr. Build. Mater. 221, 787–799 (2019).

    Article 
    MATH 

    Google Scholar 

  • Wang F. et al. Wood-inspired cement with high strength and multifunctionality. Adv. Sci. 8, 2000096 (2021).

  • Du, F. et al. Bioinspired super thermal insulating, strong and low carbon cement aerogel for building envelope. Adv. Sci. 10, 2300340 (2023).

    Article 
    CAS 

    Google Scholar 

  • Hedayat, N., Du, Y. & Ilkhani, H. Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods. Renew. Sustain. Energy Rev. 77, 1221–1239 (2017).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Chen, Y. et al. Multi-layered cement-hydrogel composite with high toughness, low thermal conductivity, and self-healing capability. Nat. Commun. 14, 3438 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Berglund, L. A. & Burgert, I. Bioinspired wood nanotechnology for functional materials. Adv. Sci. 30, 1704285 (2018).

    MATH 

    Google Scholar 

  • Huang, W., Restrepo, D., Jung, J., Su, F. Y. & Kisailus, D. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 31, 1901561 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kang, D. W. et al. Emerging porous materials and their composites for NH(3) gas removal. Adv. Sci. 7, 2002142 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pei, X. et al. Bionic mechanical design of titanium bone tissue implants and 3D printing manufacture. Mater. Lett. 208, 133–137 (2017).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Tan, Y. et al. Flexible pressure sensors based on bionic microstructures: from plants to animals. Adv. Mater. Interfaces 9, 2101312 (2022).

    Article 

    Google Scholar 

  • Gao, Y., Lalevée, J. & Simon-Masseron, A. An overview on 3D printing of structured porous materials and their applications. Adv. Mater. Technol. 8, 2300377 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhang, S., Yang, Q., Wang, C., Luo, X. & Yamauchi, Y. Porous organic frameworks: advanced materials in analytical chemistry. Adv. Sci. 5, 1801116 (2018).

    Article 

    Google Scholar 

  • Wang, W. et al. Damage-tolerant material design motif derived from asymmetrical rotation. Nat. Commun. 13, 1289 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Qi, C., Jiang, F. & Yang, S. Advanced honeycomb designs for improving mechanical properties: a review. Compos. Part B Eng. 227, 109393 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Kontturi, E. et al. Advanced materials through assembly of nanocelluloses. Adv. Mater. 30, 1703779 (2018).

    Article 

    Google Scholar 

  • Zhang, X. A novel mineralized high strength hydrogel for enhancing cell adhesion and promoting skull bone regeneration in situ. Compos. Part B Eng. 197, 108183 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Mackay, M. et al. General strategies for nanoparticle dispersion. Science 311, 1740–1743 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Yang, J. et al. Probing structure-heterogeneous nucleation efficiency relationship of mesoporous particles in polylactic acid microcellular foaming by supercritical carbon dioxide. J. Supercrit. Fluids 95, 228–235 (2014).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Aretxabaleta, X. M., Lopez-Zorrilla, J., Etxebarria, I. & Manzano, H. Multi-step nucleation pathway of C-S-H during cement hydration from atomistic simulations. Nat. Commun. 14, 7979 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amirkhani, S., Bagheri, R. & Zehtab, A. Effect of pore geometry and loading direction on deformation mechanism of rapid prototyped scaffolds. Acta Mater. 60, 2778–2789 (2012).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Birchall, J. D., Howard, A. J. & Kendall, K. Flexural strength and porosity of cements. Nature 289, 388–390 (1981).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Siddique, S. H., Hazell, P. J., Wang, H., Escobedo, J. P. & Ameri, A. Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption-A review. Addit. Manuf. 58, 103051 (2022).

    Google Scholar 

  • Wu, S. et al. Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties. Nat. Commun. 15, 4441 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Amran, Y. H. M., Farzadnia, N. & Ali, A. Properties and applications of foamed concrete; a review. Constr. Build. Mater. 101, 990–1005 (2015).

    Article 
    MATH 

    Google Scholar 

  • Shah, S. N. et al. Lightweight foamed concrete as a promising avenue for incorporating waste materials: a review. Resour. Conserv. Recycl. 164, 105103 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Zhou, J. & Chen, X. Stress-strain behavior and statistical continuous damage model of cement mortar under high strain rates. J. Mater. Civ. Eng. 25, 120–130 (2013).

    Article 
    MATH 

    Google Scholar 

  • Zeng, T., Shao, J. F. & Xu, W. Y. A micromechanical model for the elastic-plastic behavior of porous rocks. Comput. Geotech. 70, 130–137 (2015).

    Article 
    MATH 

    Google Scholar 

  • Steck, J., Kim, J., Kutsovsky, Y. & Suo, Z. Multiscale stress deconcentration amplifies fatigue resistance of rubber. Nature 624, 303–308 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sun, T. L. et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Lv, S. et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 49, 121–127 (2013).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Wang, H. et al. Deciphering the influence of superabsorbent polymers on cement hydration and portlandite formation. Constr. Build. Mater. 418, 135455 (2024).

    Article 
    CAS 

    Google Scholar 

  • Maruyama, I. & Lura, P. Properties of early-age concrete relevant to cracking in massive concrete. Cem. Concr. Res. 123, 105770 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Jensen, O. M. & Hansen, P. F. Water-entrained cement-based materials I. Principles and theoretical background. Cem. Concr. Res. 31, 647–654 (2001).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Wang, H. et al. A novel strategy to reinforce double network hydrogels with enhanced mechanical strength and swelling ratio by nano cement hydrates. Polymer 269, 125725 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Sun, G., Li, Z., Liang, R., Weng, L. T. & Zhang, L. Super stretchable hydrogel achieved by non-aggregated spherulites with diameters <5 nm. Nat. Commun. 7, 12095 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jalilehvand, F. et al. Hydration of the calcium ion. An EXAFS, large-angle X-ray scattering, and molecular dynamics simulation study. J. Am. Chem. Soc. 123, 431–441 (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Li, W. et al. Electrochemical impedance interpretation for the fracture toughness of carbon nanotube/cement composites. Constr. Build. Mater. 114, 499–505 (2016).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • RILEM. Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Mater. Struct. 18, 287–290 (1985).

  • Wang, H. et al. Assessment of the performances and reactions of quaternary LC2-slag cement. Adv. Cem. Res. 34, 529–541 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Liu, Q., Lu, Z., Xu, J., Li, Z. & Sun, G. Insight into the in situ copolymerization of monomers on cement hydration and the mechanical performance of cement paste. J. Sustain. Cem.-Based Mater. 12, 1–15 (2022).

    CAS 

    Google Scholar 

  • VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hartwigsen, C., Gœdecker, S. & Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641 (1998).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Claverie, J., Bernard, F., Cordeiro, J. M. M. & Kamali-Bernard, S. Ab initio molecular dynamics description of proton transfer at water-tricalcium silicate interface. Cem. Concr. Res. 136, 106162 (2020).

    Article 
    CAS 

    Google Scholar 

  • Leung, K. & Rempe, S. B. Ab initio rigid water: effect on water structure, ion hydration, and thermodynamics. Phys. Chem. Chem. Phys. 8, 2153–2162 (2006).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Bonomi, M. & Parrinello, M. Enhanced sampling in the well-tempered ensemble. Phys. Rev. Lett. 104, 190601 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604–613 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zeng, J. et al. DeePMD-kit v2: a software package for deep potential models. J. Chem. Phys. 159, 054801 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H., Zhang, L., Han, J. & Weinan, E. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Zhang, D. et al. DPA-2: a large atomic model as a multi-task learner. npj Comput. Mater. 10, 293 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Thompson, A. P. et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Li, Y., Pan, H., Liu, Q., Ming, X. & Li, Z. Ab initio mechanism revealing for tricalcium silicate dissolution. Nat. Commun. 13, 1253 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Li, Y., Pan, H. & Li, Z. Unravelling the dissolution dynamics of silicate minerals by deep learning molecular dynamics simulation: a case of dicalcium silicate. Cem. Concr. Res. 165, 107092 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Li, Y., Sun, Z., Li, Z., Chen, B. & Li, Z. Dimeric and oligomeric interactions between calcium silicate aqua monomers before calcium silicate hydrate nucleation. Cem. Concr. Res. 173, 107297 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Li, Y., Pan, H. & Li, Z. Ab initio metadynamics simulations on the formation of calcium silicate aqua complexes prior to the nuleation of calcium silicate hydrate. Cem. Concr. Res. 156, 106767 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bussi, G. & Laio, A. Using metadynamics to explore complex free-energy landscapes. Nat. Rev. Phys. 2, 200–212 (2020).

    Article 
    MATH 

    Google Scholar 

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.